MCQs Functions and Limits 2

Online MCQs Functions and Limits from Mathematics Intermediate Part-II (2nd Book) with Answers. There are 20 multiple-choice questions from Mathematics 2nd book. Let us start with MCQs Functions and Limits Quiz with Answers.

MCQs about Functions and Limits Chapter 1 of Intermediate Mathematics Second Year Book.

1. $\lim\limits_{x \rightarrow 4} (2x-3)^3 =$

 
 
 
 

2. Log $x$ is not defined at $x=$ ________.

 
 
 
 

3. Domain of $f^{-1}=$ _______.

 
 
 
 

4. $\lim\limits_{x \rightarrow 0} \frac{Sin\, 7\theta}{\theta}=$_________, where $\theta$ is in radians.

 
 
 
 

5. The term function was recognized by a German Mathematician

 
 
 
 

6. $x=a\, cos\, \theta$, $y=b\, sin\, \theta$ are parametric equation of _________.

 
 
 
 

7. For continuous function $\lim\limits_{x \rightarrow a} f(x)=$ __________.

 
 
 
 

8. Range of $sin\,\, x$ is

 
 
 
 

9. $\lim\limits_{x \rightarrow \infty} \frac{a}{x^p} = $___________, $p>0$

 
 
 
 

10. A relation in which every element in the domain has a unique image in the range is called

 
 
 
 

11. The volume of a sphere depends upon

 
 
 
 

12. Domain of $f(x) = \sqrt{x}$ is

 
 
 
 

13. $\lim\limits_{x \rightarrow 0} \frac{(e^{x-1})}{x}=$

 
 
 
 

14. If the degree of a polynomial function is 1 then it is called a ____________ function.

 
 
 
 

15. If $x$ and $y$ are not separable then it is called __________ function.

 
 
 
 

16. $\lim\limits_{x \rightarrow \infty} e^{-x} =$

 
 
 
 

17. $f(x)=|x|$ is _______ function.

 
 
 
 

18. The degree of $2x^4 – 3xy^3 + 2x^2 + 1$ is

 
 
 
 

19. The base of natural logarithm is

 
 
 
 

20. $f(x)=x^3$ is _________ function.

 
 
 
 

MCQs Functions and Limits

  • The term function was recognized by a German Mathematician
  • The volume of a sphere depends upon
  • The degree of $2x^4 – 3xy^3 + 2x^2 + 1$ is
  • If the degree of a polynomial function is 1 then it is called a _________ function.
  • Range of $sin\,\, x$ is
  • The base of natural logarithm is
  • If $x$ and $y$ are not separable then it is called ______ function.
  • $\lim\limits_{x \rightarrow 4} (2x-3)^3 =$
  • $\lim\limits_{x \rightarrow 0} \frac{(e^{x-1})}{x}=$
  • A relation in which every element in the domain has a unique image in the range is called
  • $\lim\limits_{x \rightarrow \infty} e^{-x} =$
  • $f(x)=|x|$ is function.
  • $f(x)=x^3$ is function
  • $\lim\limits_{x \rightarrow \infty} \frac{a}{x^p} = $___________, $p>0$
  • For continuous function $\lim\limits_{x \rightarrow a} f(x)=$ _________.
  • Log $x$ is not defined at $x=$.
  • Domain of $f(x) = \sqrt{x}$ is
  • Domain of $f^{-1}=$.
  • $\lim\limits_{x \rightarrow 0} \frac{Sin\, 7\theta}{\theta}=$_________, where $\theta$ is in radians.
  • $x=a\, cos\, \theta$, $y=b\, sin\, \theta$ are parametric equation of _________.
MCQs Functions and Limits

SPSS Data Analysis

R and Data Analysis

gmstat.com Online Quiz Website

MCQs Functions and Limits 1

Online MCQs about Functions and Limits from Chapter 1 of Intermediate Mathematics Book 2.

Please go to MCQs Functions and Limits 1 to view the test

Online MCQs Functions and Limits Chapter 1 Mathematics

  • Let $P(x)=a_nx^n + a_{n-1}x^{n-1} + a_{n-2}X^{n-2} + \cdots + a_1 x+a_0$ where $a_1, a_2 \in R$ is called
  • The range of $f(x)=x^3$ is
  • A function $A: X \rightarrow Y$ defined by $A(\propto) = a $ is called function
  • If $x=a^y$ then $y=$
  • If $f(x)=f(-x)$ then it is called
  • $Cosh^2 x + Sinh^2 x =$
  • If $p(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots a_1x + a_0$ is a continuous function of degree $n$ then $\lim_{x\rightarrow c} P(x)=$
  • If $f(x)=2x + 1 $ and $g(x)=x^2+2x-1$ then $(f-g)(x)$ is given by
  • If $h(x) = x+2$ and $j(x)=4-x^2$ then $(hj)(x)$ is given by
  • If $g(x) = x^3 – x$ it is
  • If a point$(a, b)$ lies on the graph of the function which of the following points must lie on the graph of the inverse of $f$
  • $\lim_{x \rightarrow 0} Sin \frac{px}{qx} =$
  • If $(fx)= x \sqrt{x^2-4}$ then domain of $f(x)$ is
  • If $f(x)=2$ for all real numbers then $f(x+2)=$
  • $\lim_{x\rightarrow 0} (1+3x)^{1/x}=$
  • The relation $x^2y + xy^2 -3 =0$
  • If $A={1,2}$ and $B={a, b}$ and $R_1$ is ${(1, a), (2, b)}$ then $F_1^{-1}$ is
  • $\lim_{x \rightarrow 0}\, a^t – 1/t=$
  • $\lim {x \rightarrow \infty } e^{1/x} – 1/e^{1/x} + 1 = $ $\lim{x \rightarrow \infty}\, 5x^2 – 3/7x^3 -1 =$
MCQs Functions and Limits

MCQs General Knowledge

Learn R Programming

MCQs Sets Functions and Groups