MCQs Functions and Limits 1

Online MCQs about Functions and Limits from Chapter 1 of Intermediate Mathematics Book 2.

MCQs about Functions and Limits from Intermediate Mathematics Second Year Book.

1. $\lim_{x \rightarrow 0} Sin \frac{px}{qx} =$

 
 
 
 

2. The range of $f(x)=x^3$ is

 
 
 
 

3. If $x=a^y$ then $y=$

 
 
 
 

4. If $f(x)=f(-x)$ then it is called

 
 
 
 

5. A function $A: X \rightarrow Y$ defined by $A(\propto) = a $ is called function

 
 
 
 

6. If $f(x)=2x + 1 $ and $g(x)=x^2+2x-1$ then $(f-g)(x)$ is given by

 
 
 
 

7. $\lim_{x\rightarrow 0} (1+3x)^{1/x}=$

 
 
 
 

8. $\lim_{x \rightarrow 0}\, a^t – 1/t=$

 
 
 
 

9. If $f(x)=2$ for all real numbers then $f(x+2)=$

 
 
 
 

10. Let $P(x)=a_nx^n + a_{n-1}x^{n-1} + a_{n-2}X^{n-2} + \cdots + a_1 x+a_0$ where $a_1, a_2 \in R$ is called

 
 
 
 

11. If $g(x) = x^3 – x$ it is

 
 
 
 

12. If a point$(a, b)$ lies on the graph of the function which of the following points must lie on the graph of the inverse of $f$

 
 
 
 

13. If $A=\{1,2\}$ and $B=\{a, b\}$ and $R_1$ is $\{(1, a), (2, b)\}$ then $F_1^{-1}$ is

 
 
 
 

14. $\lim _{x \rightarrow \infty } e^{1/x} – 1/e^{1/x} + 1 = $

 
 
 
 

15. If $p(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots a_1x + a_0$ is a continuous function of degree $n$ then $\lim_{x\rightarrow c} P(x)=$

 
 
 
 

16. $Cosh^2 x + Sinh^2 x =$

 
 
 
 

17. If $h(x) = x+2$ and $j(x)=4-x^2$ then $(hj)(x)$ is given by

 
 
 
 

18. The relation $x^2y + xy^2 -3 =0$

 
 
 
 

19. $\lim_{x \rightarrow \infty}\, 5x^2 – 3/7x^3 -1 =$

 
 
 
 

20. If $(fx)= x \sqrt{x^2-4}$ then domain of $f(x)$ is

 
 
 
 

Online MCQs Functions and Limits Chapter 1 Mathematics

  • Let $P(x)=a_nx^n + a_{n-1}x^{n-1} + a_{n-2}X^{n-2} + \cdots + a_1 x+a_0$ where $a_1, a_2 \in R$ is called
  • The range of $f(x)=x^3$ is
  • A function $A: X \rightarrow Y$ defined by $A(\propto) = a $ is called function
  • If $x=a^y$ then $y=$
  • If $f(x)=f(-x)$ then it is called
  • $Cosh^2 x + Sinh^2 x =$
  • If $p(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots a_1x + a_0$ is a continuous function of degree $n$ then $\lim_{x\rightarrow c} P(x)=$
  • If $f(x)=2x + 1 $ and $g(x)=x^2+2x-1$ then $(f-g)(x)$ is given by
  • If $h(x) = x+2$ and $j(x)=4-x^2$ then $(hj)(x)$ is given by
  • If $g(x) = x^3 – x$ it is
  • If a point$(a, b)$ lies on the graph of the function which of the following points must lie on the graph of the inverse of $f$
  • $\lim_{x \rightarrow 0} Sin \frac{px}{qx} =$
  • If $(fx)= x \sqrt{x^2-4}$ then domain of $f(x)$ is
  • If $f(x)=2$ for all real numbers then $f(x+2)=$
  • $\lim_{x\rightarrow 0} (1+3x)^{1/x}=$
  • The relation $x^2y + xy^2 -3 =0$
  • If $A={1,2}$ and $B={a, b}$ and $R_1$ is ${(1, a), (2, b)}$ then $F_1^{-1}$ is
  • $\lim_{x \rightarrow 0}\, a^t – 1/t=$
  • $\lim {x \rightarrow \infty } e^{1/x} – 1/e^{1/x} + 1 = $ $\lim{x \rightarrow \infty}\, 5x^2 – 3/7x^3 -1 =$
MCQs Functions and Limits

MCQs General Knowledge

Learn R Programming

MCQs Sets Functions and Groups

Leave a Reply

Discover more from GM Statistics

Subscribe now to keep reading and get access to the full archive.

Continue reading