# MCQs Differentiation 1

1. The equation of tangent line to the curve $x^2+y^2=c^2$ at $(a,b)$

2. $1-\frac{t^2}{2!} + \frac{t^4}{4!} – \frac{t^6}{6!} + \cdots$ is an expansion of

3. A function $f(x)$ has a minimum value at $x=a$ if

4. $\frac{d}{dx} \frac{[sin \frac{\pi}{2}]}{sec\, x}$

5. $\frac{d}{dx} [cos\, ax+ cos\, bx + cos\,cx]$

6. If $y^3=x^2$ then $\frac{dy}{dx}$ is

7. If $x=a\,cos^2 \theta$, $y=b\,sin^2\theta$ then $\frac{dy}{dx}$ is

8. The derivative of $sin\, x^0$ w.r. to $x$

9. $\frac{d^4}{dx^4}(x^8+12)$ is

10. $\frac{d}{dx} [x^{x2}]$ is

11. Two numbers such as their difference is 50 and product is minimum are

12. $\frac{d}{dx} [sin \, x\, cos\, x]$

13. The derivative of $x^2 + y^2 = 0$ is

14. $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ is an expansion of

15. The derivative of $cos\left(\frac{ax}{c}\right)$ is

16. $y=Cos(bx+c)$ then $\frac{d^4}{dx^4}cos(bx+c)$

17. If $y=f(x)$ then $\frac{dy}{dx}$ is

18. If $f'(x)=0$ at $x=c$ then $f(c)$ is

19. $\frac{d}{dx} (a^{b+c})$

20. If $y=x^7+x^6+x^5$ then $d^8(y)=$

### MCQs Differentiation

• A function $f(x)$ has a minimum value at $x=a$ if
• If $y=f(x)$ then $\frac{dy}{dx}$ is
• The derivative of $cos\left(\frac{ax}{c}\right)$ is
• $\frac{d}{dx} \frac{[sin \frac{\pi}{2}]}{sec\, x}$
• If $f'(x)=0$ at $x=c$ then $f(c)$ is
• $\frac{d}{dx} [sin \, x\, cos\, x]$
• The derivative of $x^2 + y^2 = 0$ is
• If $x=a\,cos^2 \theta$, $y=b\,sin^2\theta$ then $\frac{dy}{dx}$ is
• If $y=x^7+x^6+x^5$ then $d^8(y)=$
• $\frac{d}{dx} [x^{x2}]$ is
• $\frac{d}{dx} (a^{b+c})$
• $y=Cos(bx+c)$ then $\frac{d^4}{dx^4}cos(bx+c)$
• If $y^3=x^2$ then $\frac{dy}{dx}$ is
• $\frac{d^4}{dx^4}(x^8+12)$ is
• $\frac{d}{dx} [cos\, ax+ cos\, bx + cos\,cx]$
• The equation of tangent line to the curve $x^2+y^2=c^2$ at $(a,b)$
• Two numbers such as their difference is 50 and product is minimum are
• The derivative of $sin\, x^0$ w.r. to $x$
• $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ is an expansion of
• $1-\frac{t^2}{2!} + \frac{t^4}{4!} – \frac{t^6}{6!} + \cdots$ is an expansion of

R Programming Language