Differentiation Quizzes

Online Quiz about Chapter 2: Differentiation from Intermediate Mathematics Second Year. Click the link below to start with online differentiation quizzes.

MCQs Differentiation 1MCQs Differentiation 1MCQs Differentiation 1
MCQs Differentiation 1MCQs Differentiation 1MCQs Differentiation 1
Online Differentiation Quizzes with Answers.

R Programming Language

Statistics and Data Analysis

MCQs Differentiation 1

Online MCQs about Intermediate Mathematics Part II. Let us start with MCQs about Differentiation Chapter-2 First Mathematics.

Online MCQs about second year mathematics Chapter 2 Differentiation with answers

1. $y=Cos(bx+c)$ then $\frac{d^4}{dx^4}cos(bx+c)$

 
 
 
 

2. $1-\frac{t^2}{2!} + \frac{t^4}{4!} – \frac{t^6}{6!} + \cdots $ is an expansion of

 
 
 
 

3. The derivative of $sin\, x^0$ w.r. to $x$

 
 
 
 

4. Two numbers such as their difference is 50 and product is minimum are

 
 
 
 

5. $\frac{d}{dx} (a^{b+c})$

 
 
 
 

6. The equation of tangent line to the curve $x^2+y^2=c^2$ at $(a,b)$

 
 
 
 

7. $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ is an expansion of

 
 
 
 

8. $\frac{d}{dx} [cos\, ax+ cos\, bx + cos\,cx]$

 
 
 
 

9. $\frac{d}{dx} [sin \, x\, cos\, x]$

 
 
 
 

10. The derivative of $x^2 + y^2 = 0$ is

 
 
 
 

11. If $y=x^7+x^6+x^5$ then $d^8(y)=$

 
 
 
 

12. If $y^3=x^2$ then $\frac{dy}{dx}$ is

 
 
 
 

13. A function $f(x)$ has a minimum value at $x=a$ if

 
 
 
 

14. If $y=f(x)$ then $\frac{dy}{dx}$ is

 
 
 
 

15. If $f'(x)=0$ at $x=c$ then $f(c)$ is

 
 
 
 

16. $\frac{d^4}{dx^4}(x^8+12)$ is

 
 
 
 

17. The derivative of $cos\left(\frac{ax}{c}\right)$ is

 
 
 
 

18. $\frac{d}{dx} \frac{[sin \frac{\pi}{2}]}{sec\, x}$

 
 
 
 

19. If $x=a\,cos^2 \theta$, $y=b\,sin^2\theta$ then $\frac{dy}{dx}$ is

 
 
 
 

20. $\frac{d}{dx} [x^{x2}]$ is

 
 
 
 

MCQs Differentiation

  • A function $f(x)$ has a minimum value at $x=a$ if
  • If $y=f(x)$ then $\frac{dy}{dx}$ is
  • The derivative of $cos\left(\frac{ax}{c}\right)$ is
  • $\frac{d}{dx} \frac{[sin \frac{\pi}{2}]}{sec\, x}$
  • If $f'(x)=0$ at $x=c$ then $f(c)$ is
  • $\frac{d}{dx} [sin \, x\, cos\, x]$
  • The derivative of $x^2 + y^2 = 0$ is
  • If $x=a\,cos^2 \theta$, $y=b\,sin^2\theta$ then $\frac{dy}{dx}$ is
  • If $y=x^7+x^6+x^5$ then $d^8(y)=$
  • $\frac{d}{dx} [x^{x2}]$ is
  • $\frac{d}{dx} (a^{b+c})$
  • $y=Cos(bx+c)$ then $\frac{d^4}{dx^4}cos(bx+c)$
  • If $y^3=x^2$ then $\frac{dy}{dx}$ is
  • $\frac{d^4}{dx^4}(x^8+12)$ is
  • $\frac{d}{dx} [cos\, ax+ cos\, bx + cos\,cx]$
  • The equation of tangent line to the curve $x^2+y^2=c^2$ at $(a,b)$
  • Two numbers such as their difference is 50 and product is minimum are
  • The derivative of $sin\, x^0$ w.r. to $x$
  • $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ is an expansion of
  • $1-\frac{t^2}{2!} + \frac{t^4}{4!} – \frac{t^6}{6!} + \cdots $ is an expansion of
MCQs Differentiation

R Programming Language

MCQs Statistics with Answers