Online MCQs about Functions and Limits from Chapter 1 of Intermediate Mathematics Book 2.
MCQs about Functions and Limits from Intermediate Mathematics Second Year Book.
Online MCQs Functions and Limits Chapter 1 Mathematics
- Let $P(x)=a_nx^n + a_{n-1}x^{n-1} + a_{n-2}X^{n-2} + \cdots + a_1 x+a_0$ where $a_1, a_2 \in R$ is called
- The range of $f(x)=x^3$ is
- A function $A: X \rightarrow Y$ defined by $A(\propto) = a $ is called function
- If $x=a^y$ then $y=$
- If $f(x)=f(-x)$ then it is called
- $Cosh^2 x + Sinh^2 x =$
- If $p(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots a_1x + a_0$ is a continuous function of degree $n$ then $\lim_{x\rightarrow c} P(x)=$
- If $f(x)=2x + 1 $ and $g(x)=x^2+2x-1$ then $(f-g)(x)$ is given by
- If $h(x) = x+2$ and $j(x)=4-x^2$ then $(hj)(x)$ is given by
- If $g(x) = x^3 – x$ it is
- If a point$(a, b)$ lies on the graph of the function which of the following points must lie on the graph of the inverse of $f$
- $\lim_{x \rightarrow 0} Sin \frac{px}{qx} =$
- If $(fx)= x \sqrt{x^2-4}$ then domain of $f(x)$ is
- If $f(x)=2$ for all real numbers then $f(x+2)=$
- $\lim_{x\rightarrow 0} (1+3x)^{1/x}=$
- The relation $x^2y + xy^2 -3 =0$
- If $A={1,2}$ and $B={a, b}$ and $R_1$ is ${(1, a), (2, b)}$ then $F_1^{-1}$ is
- $\lim_{x \rightarrow 0}\, a^t – 1/t=$
- $\lim {x \rightarrow \infty } e^{1/x} – 1/e^{1/x} + 1 = $ $\lim{x \rightarrow \infty}\, 5x^2 – 3/7x^3 -1 =$