Functions and Limits Quiz Second Year 3

The post is about the MCQs Functions and Limits Quiz from Chapter 1 of Mathematics Second Year Book. Let us start with MCQs Functions and Limits Quiz.

Online MCQs about Chapter 1 of Functions and Limits from Intermediate Mathematics book Part-II with Question and Answers

1. A function $f(x)$ is said to be continuous at $x=c$ if

 
 
 
 

2. If $f:X\rightarrow Y$, then $Y$ is called

 
 
 
 

3. The perimeter $P$ of a square as a function of its Area $A$ is

 
 
 
 

4. The are of circumscribed $n$-sides Polygon as $n\rightarrow \infty$ approaches are of ——-.

 
 
 
 

5. If $\frac{f(x)+f(-x)}{2}=0$, then $f(x)$ is ——-.

 
 
 
 

6. If $f:X\rightarrow Y$ is a function, then $y=f(x), x \in X$ called ——-.

 
 
 
 

7. If $f(x)=\frac{x}{x^2-4}$, $f(x)$ is not defined at $x=$?

 
 
 
 

8. $\lim\limits_{x\rightarrow \infty} \frac{a}{x^p}=$ ——–.

 
 
 
 

9. $\lim \limits_{x \rightarrow \pi} \frac{sin(\pi – x)}{x-\pi}=$——–.

 
 
 
 

10. The function $f(x)=\frac{1}{x+1}$ is discontinuous at ——–.

 
 
 
 

11. $x=at^2$, $y=2at$ represents ——-.

 
 
 
 

12. $\lim\limits_{x\rightarrow a} \frac{x^3-a^3}{x-a}=$

 
 
 
 

13. If $y$ is expressed in terms of a variable $x$ as $y=f(x)$, called

 
 
 
 

14. $sin\,h^{-1}$\, x =$ ——

 
 
 
 

15. $\lim\limits_{x\rightarrow 0} \frac{3^{3x}-1}{x}=$ ——–.

 
 
 
 

16. $f(x)=sin\,x + cos\, x$ is ——– function.

 
 
 
 

17. The range of a constant function is ——–.

 
 
 
 

18. $log\, x$ is not defined at $x=$ ——–.

 
 
 
 

19. $cos\, h^2x – sin\,h^2x =$——–.

 
 
 
 

20. A function $I:x \rightarrow x$ defined as $I(x)=x$ is called ——–.

 
 
 
 

MCQS Functions and Limits Quiz with Answers

  • If $y$ is expressed in terms of a variable $x$ as $y=f(x)$, called
  • $x=at^2$, $y=2at$ represents ——-.
  • If $f:X\rightarrow Y$, then $Y$ is called
  • $\lim\limits_{x\rightarrow a} \frac{x^3-a^3}{x-a}=$
  • A function $f(x)$ is said to be continuous at $x=c$ if
  • A function $I:x \rightarrow x$ defined as $I(x)=x$ is called ——–.
  • If $f:X\rightarrow Y$ is a function, then $y=f(x), x \in X$ called ——-.
  • If $\frac{f(x)+f(-x)}{2}=0$, then $f(x)$ is ——-.
  • If $f(x)=\frac{x}{x^2-4}$, $f(x)$ is not defined at $x=$?
  • $\lim\limits_{x\rightarrow 0} \frac{3^{3x}-1}{x}=$ ——–.
  • The range of a constant function is ——–.
  • $f(x)=sin\,x + cos\, x$ is ——– function.
  • $sin\,h^{-1}$\, x =$ ——
  • The perimeter $P$ of a square as a function of its Area $A$ is
  • The are of circumscribed $n$-sides Polygon as $n\rightarrow \infty$ approaches are of ——-.
  • $\lim\limits_{x\rightarrow \infty} \frac{a}{x^p}=$ ——–.
  • $log\, x$ is not defined at $x=$ ——–.
  • $\lim \limits_{x \rightarrow \pi} \frac{sin(\pi – x)}{x-\pi}=$——–.
  • $cos h^2x – sin h^2x =$——–.
  • The function $f(x)=\frac{1}{x+1}$ is discontinuous at ——–.
MCQs Functions and Limits Quiz with Answers

Test Preparation MCQs

SPSS Data Analysis

R Programming Language

Differentiation Quizzes 2024

Online Quiz about Chapter 2: Differentiation from Intermediate Mathematics Second Year. Each quiz contains 20 multiple-choice questions from the Differentiation Chapter of First-Year Mathematics. Click the link below to start with the online differentiation quiz.

Differentiation Quizzes

MCQs Differentiation 1MCQs Differentiation 1MCQs Differentiation 1
MCQs Differentiation 1MCQs Differentiation 1MCQs Differentiation 1
Online Differentiation Quizzes with Answers.

R Programming Language

Statistics and Data Analysis

MCQs Differentiation 1

Online MCQs about Intermediate Mathematics Part II. There are 20 multiple-choice questions from the First Year Mathematics of Differentiation Chapter. Let us start with MCQs about Differentiation Chapter-2 First Year Mathematics.

Please go to MCQs Differentiation 1 to view the test

MCQs Differentiation with Answers

  • A function $f(x)$ has a minimum value at $x=a$ if
  • If $y=f(x)$ then $\frac{dy}{dx}$ is
  • The derivative of $cos\left(\frac{ax}{c}\right)$ is
  • $\frac{d}{dx} \frac{[sin \frac{\pi}{2}]}{sec\, x}$
  • If $f'(x)=0$ at $x=c$ then $f(c)$ is
  • $\frac{d}{dx} [sin \, x\, cos\, x]$
  • The derivative of $x^2 + y^2 = 0$ is
  • If $x=a\,cos^2 \theta$, $y=b\,sin^2\theta$ then $\frac{dy}{dx}$ is
  • If $y=x^7+x^6+x^5$ then $d^8(y)=$
  • $\frac{d}{dx} [x^{x2}]$ is
  • $\frac{d}{dx} (a^{b+c})$
  • $y=Cos(bx+c)$ then $\frac{d^4}{dx^4}cos(bx+c)$
  • If $y^3=x^2$ then $\frac{dy}{dx}$ is
  • $\frac{d^4}{dx^4}(x^8+12)$ is
  • $\frac{d}{dx} [cos\, ax+ cos\, bx + cos\,cx]$
  • The equation of tangent line to the curve $x^2+y^2=c^2$ at $(a,b)$
  • Two numbers such as their difference is 50 and product is minimum are
  • The derivative of $sin\, x^0$ w.r. to $x$
  • $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ is an expansion of
  • $1-\frac{t^2}{2!} + \frac{t^4}{4!} – \frac{t^6}{6!} + \cdots $ is an expansion of
MCQs Differentiation

R Programming Language

MCQs Statistics with Answers