Derivatives Quiz 1

This is the Multiple Choice Questions Test in Differential Calculus (Limits and Derivatives) a topic in Business Mathematics. Let us start with Derivatives Quiz.

MCQs about Derivatives for the preparation of Business Mathematics and Exams related to ICMAP, CA, Commerce, and Business Studies.

1. If $f(x) = \ln(a+b)$ then $f'(x)=$?

 
 
 
 

2. If $y=ax^2+bx + c$ then $\frac{dy}{dx}=$?

 
 
 
 

3. The gradient of the curve $y=2x^3 – 5x^2 – 3x$ at $x=0$ is

 
 
 
 

4. The gradient of the curve $4x^3-7x^2+15$ at $x=0$ is

 
 
 
 

5. If $y=e^{x^2}$ then $\frac{dy}{dx}=$?

 
 
 
 

6. If $f(x)=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^2$ then $f'(x)=$?

 
 
 
 

7. $\frac{d}{dx} \, \sqrt{x}=$?

 
 
 
 

8. $\frac{d}{dx}\, \ln \left(x+\frac{1}{x}\right)=$?

 
 
 
 

9. If $y=f(x)=\ln x$, the its $\frac{dy}{dx}$ will be ___________

 
 
 
 

10. If $ y=\frac{x-1}{x+1}$ then $\frac{dy}{dx}=$?

 
 
 
 

11. If $y=(\sqrt[n]{x})^0$ then $\frac{dy}{dx}=$?

 
 
 
 

12. If $f(x)=(\sqrt{x}+1)(\sqrt{x}-1)$ then $f'(x)=$?

 
 
 
 

13. $\frac{d}{dx} e^{-x}=$?

 
 
 
 

14. If $y=e^{2x}(e^x+e^{-x})$ then $\frac{dy}{dx}=$?

 
 
 
 

15. $\frac{d}{dx}\, e^{2x}=$?

 
 
 
 

16. Derivative of $x^2$ with respect to $e^x$ is

 
 
 
 

17. Find $\frac{dy}{dx}$ where $y=e^0$?

 
 
 
 

18. If $y=\frac{1-x^2}{1+x^2}$ then $\frac{dy}{dx}=$?

 
 
 
 

19. The derivative of a constant number is always

 
 
 
 

20. The derivative of $x^{-\frac{1}{2}}$ is

 
 
 
 


The questions are designed to help and gain a deep understanding of the concept related to derivatives.

Derivatives Quiz with Answers

  • The derivative of a constant number is always
  • If $y=f(x)=\ln x$, then its $\frac{dy}{dx}$ will be _
  • The gradient of the curve $y=2x^3 – 5x^2 – 3x$ at $x=0$ is
  • Find $\frac{dy}{dx}$ where $y=e^0$?
  • If $f(x) = \ln(a+b)$ then $f'(x)=$?
  • $\frac{d}{dx} \, \sqrt{x}=$?
  • If $y=ax^2+bx + c$ then $\frac{dy}{dx}=$?
  • The derivative of $x^{-\frac{1}{2}}$ is
  • $\frac{d}{dx}\, e^{2x}=$?
  • If $ y=\frac{x-1}{x+1}$ then $\frac{dy}{dx}=$?
  • If $y=\frac{1-x^2}{1+x^2}$ then $\frac{dy}{dx}=$?
  • If $y=e^{2x}(e^x+e^{-x})$ then $\frac{dy}{dx}=$?
  • $\frac{d}{dx} e^{-x}=$?
  • If $y=e^{x^2}$ then $\frac{dy}{dx}=$?
  • If $f(x)=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^2$ then $f'(x)=$?
  • $\frac{d}{dx}\, \ln \left(x+\frac{1}{x}\right)=$?
  • Derivative of $x^2$ with respect to $e^x$ is
  • If $f(x)=(\sqrt{x}+1)(\sqrt{x}-1)$ then $f'(x)=$?
  • If $y=(\sqrt[n]{x})^0$ then $\frac{dy}{dx}=$?
  • The gradient of the curve $4x^3-7x^2+15$ at $x=0$ is
MCQs Derivatives Quiz with Answers

https://rfaqs.com

https//itfeature.com

Leave a Comment

Discover more from GM Statistics

Subscribe now to keep reading and get access to the full archive.

Continue reading