Important Derivatives Quiz 1

This is the Multiple Choice Questions Test in Differential Calculus (Limits and Derivatives) a topic in Business Mathematics. Let us start with Derivatives Quiz.

MCQs about Derivatives for the preparation of Business Mathematics and Exams related to ICMAP, CA, Commerce, and Business Studies.

1. $\frac{d}{dx}\, e^{2x}=$?

 
 
 
 

2. If $y=f(x)=\ln x$, the its $\frac{dy}{dx}$ will be ___________

 
 
 
 

3. If $f(x)=(\sqrt{x}+1)(\sqrt{x}-1)$ then $f'(x)=$?

 
 
 
 

4. If $y=(\sqrt[n]{x})^0$ then $\frac{dy}{dx}=$?

 
 
 
 

5. The derivative of $x^{-\frac{1}{2}}$ is

 
 
 
 

6. If $ y=\frac{x-1}{x+1}$ then $\frac{dy}{dx}=$?

 
 
 
 

7. $\frac{d}{dx} \, \sqrt{x}=$?

 
 
 
 

8. If $f(x) = \ln(a+b)$ then $f'(x)=$?

 
 
 
 

9. If $f(x)=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^2$ then $f'(x)=$?

 
 
 
 

10. If $y=ax^2+bx + c$ then $\frac{dy}{dx}=$?

 
 
 
 

11. If $y=\frac{1-x^2}{1+x^2}$ then $\frac{dy}{dx}=$?

 
 
 
 

12. The gradient of the curve $y=2x^3 – 5x^2 – 3x$ at $x=0$ is

 
 
 
 

13. $\frac{d}{dx}\, \ln \left(x+\frac{1}{x}\right)=$?

 
 
 
 

14. Derivative of $x^2$ with respect to $e^x$ is

 
 
 
 

15. The derivative of a constant number is always

 
 
 
 

16. Find $\frac{dy}{dx}$ where $y=e^0$?

 
 
 
 

17. $\frac{d}{dx} e^{-x}=$?

 
 
 
 

18. The gradient of the curve $4x^3-7x^2+15$ at $x=0$ is

 
 
 
 

19. If $y=e^{2x}(e^x+e^{-x})$ then $\frac{dy}{dx}=$?

 
 
 
 

20. If $y=e^{x^2}$ then $\frac{dy}{dx}=$?

 
 
 
 

The questions are designed to help and gain a deep understanding of the concept related to derivatives.

Derivatives Quiz with Answers

  • The derivative of a constant number is always
  • If $y=f(x)=\ln x$, then its $\frac{dy}{dx}$ will be _
  • The gradient of the curve $y=2x^3 – 5x^2 – 3x$ at $x=0$ is
  • Find $\frac{dy}{dx}$ where $y=e^0$?
  • If $f(x) = \ln(a+b)$ then $f'(x)=$?
  • $\frac{d}{dx} \, \sqrt{x}=$?
  • If $y=ax^2+bx + c$ then $\frac{dy}{dx}=$?
  • The derivative of $x^{-\frac{1}{2}}$ is
  • $\frac{d}{dx}\, e^{2x}=$?
  • If $ y=\frac{x-1}{x+1}$ then $\frac{dy}{dx}=$?
  • If $y=\frac{1-x^2}{1+x^2}$ then $\frac{dy}{dx}=$?
  • If $y=e^{2x}(e^x+e^{-x})$ then $\frac{dy}{dx}=$?
  • $\frac{d}{dx} e^{-x}=$?
  • If $y=e^{x^2}$ then $\frac{dy}{dx}=$?
  • If $f(x)=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^2$ then $f'(x)=$?
  • $\frac{d}{dx}\, \ln \left(x+\frac{1}{x}\right)=$?
  • Derivative of $x^2$ with respect to $e^x$ is
  • If $f(x)=(\sqrt{x}+1)(\sqrt{x}-1)$ then $f'(x)=$?
  • If $y=(\sqrt[n]{x})^0$ then $\frac{dy}{dx}=$?
  • The gradient of the curve $4x^3-7x^2+15$ at $x=0$ is
MCQs Derivatives Quiz with Answers

https://rfaqs.com

https//itfeature.com