MCQs on Matrices and Determinants 5

The quiz is about the MCQs on Matrices and Determinants from First Year Mathematics with Answers. There are 20 multiple-choice questions from the Mathematics book of part 1. Let us start with the MCQs on Matrices and Determinants Quiz.

Online Multiple Choice Questions about Matrices and Determinants from First Year Mathematics Book

1. If $A$ is a symmetric (skew-symmetric) then $A^2$ must be

 
 
 
 

2. Transpose of a row matrix is

 
 
 
 

3. In a homogeneous system of linear equations, the solution (0, 0, 0) is

 
 
 
 

4. If any matrix $A$ has different numbers of rows and column then $A$ is

 
 
 
 

5. If $A$ is any square matrix then $A-A^t$ is a

 
 
 
 

6. If $A$ is any square matrix then $A+A^t$ is a

 
 
 
 

7. The number of non-zero rows in the echelon form of a matrix is called

 
 
 
 

8. If $A$ is any square matrix then $A+(\overline{A})^t$ is a

 
 
 
 

9. The value of $\lambda$ for which the system $x+2y=4$; $2x+\lambda y = -3$ does not possess the unique solution.

 
 
 
 

10. If $AX=O$ then $X=$?

 
 
 
 

11. If the system $x+2y=0$; $2x+\lambda y=0$ has non-trivial solution, then $\lambda$ is

 
 
 
 

12. The inverse of the unit matrix is

 
 
 
 

13. If a system of linear equations has no solution at all, then it is called a/an

 
 
 
 

14. The cofactor $A_{22}$ of $\begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 5 \\ 0 & 1 & -1\end{bmatrix}$ is

 
 
 
 

15. If all the entries the entries of a row of a square matrix $A$ are zero, then $|A|$ equals

 
 
 
 

16. If $\begin{bmatrix} a & b \\ 0 & 7\end{bmatrix}= \begin{bmatrix}2&3 \\ 1 &-9 \end{bmatrix}$ then

 
 
 
 

17. If $\begin{vmatrix}x & 4 \\ 5 & 10\end{vmatrix}=0 \Rightarrow x$ equals

 
 
 
 

18. If $\begin{bmatrix}2x+3& 1 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} -1+x & 1 \\ -3 & 4\end{bmatrix}$ then $x=$?

 
 
 
 

19. If $A$ is any square matrix then $A-(\overline{A}^t$ is a

 
 
 
 

20. If $A=[a_{ij}]_{3\times 3}$ then $I_3\, A$ is equal to

 
 
 
 

MCQs on Matrices and Determinants First-Year Mathematics

  • If $\begin{bmatrix} a & b \ 0 & 7\end{bmatrix}= \begin{bmatrix}2&3 \ 1 &-9 \end{bmatrix}$ then
  • The number of non-zero rows in the echelon form of a matrix is called
  • If $A$ is any square matrix then $A+A^t$ is a
  • If $A$ is any square matrix then $A-A^t$ is a
  • If $A$ is any square matrix then $A+(\overline{A})^t$ is a
  • If $A$ is any square matrix then $A-(\overline{A}^t$ is a
  • If $A$ is a symmetric (skew-symmetric) then $A^2$ must be
  • In a homogeneous system of linear equations, the solution (0, 0, 0) is
  • If $AX=O$ then $X=$?
  • If a system of linear equations has no solution at all, then it is called a/an
  • The value of $\lambda$ for which the system $x+2y=4$; $2x+\lambda y = -3$ does not possess the unique solution.
  • If the system $x+2y=0$; $2x+\lambda y=0$ has non-trivial solution, then $\lambda$ is
  • If $\begin{bmatrix}2x+3& 1 \ -3 & 4 \end{bmatrix} = \begin{bmatrix} -1+x & 1 \ -3 & 4\end{bmatrix}$ then $x=$?
  • The cofactor $A_{22}$ of $\begin{bmatrix} 1 & 2 & 4 \ -1 & 2 & 5 \ 0 & 1 & -1\end{bmatrix}$ is
  • If $A=[a_{ij}]_{3\times 3}$ then $I_3\, A$ is equal to
  • If all the entries the entries of a row of a square matrix $A$ are zero, then $|A|$ equals
  • If $\begin{vmatrix}x & 4 \ 5 & 10\end{vmatrix}=0 \Rightarrow x$ equals
  • The inverse of the unit matrix is
  • Transpose of a row matrix is
  • If any matrix $A$ has different numbers of rows and columns then $A$ is
MCQs on matrices and Determinants quiz

https://itfeature.com

https://rfaqs.com

MCQs Matrices and Determinants Questions 4

Online Multiple-Choice Questions from Chapter 3 of First Year Mathematics (Intermediate Part-I). The Matrices and Determinants Questions test contains 20 MCQ-type questions with Answers. Let us start with the Matrices and Determinant Questions Quiz.

Please go to MCQs Matrices and Determinants Questions 4 to view the test

Matrices and Determinants Questions Test with Answers

matrices and Determinants Questions quiz First year Mathematics
  • Let $A=[a_{ij}]$ be a square matrix and $M_{ij}$ is the determinant obtained by deleting $i$th row and $j$th column of $A$. Then minor of $a_{ij}$ is equal to
  • Let $A=[a_{ij}]$ be a square matrix and $M_{ij}$ is the determinant obtained by deleting $i$th row and $j$th column of $A$. The cofactor of $a_{ij}$ is equal to
  • For any square matrix $A$. It is always true that
  • For any square matrix $A$, $|A|$ is equal to
  • If all entries of a square matrix of order 3 are multiplied by $k$ then the value of $|kA|$ is equal to
  • For any non-singular matrix $A$, it is true that
  • For any non-singular matrix $A$, it is true that
  • For any non-singular matrices $A$ and $B$, it is true that
  • A square matrix $A=[a_{ij}]$ for which all $a_{ij}=0$, $i>j$ then $A$ is called
  • A square matrix $A=[a_{ij}]$ for which all $a_{ij} = 0$, $i<j$ then $A$ is called
  • A triangular matrix is always a
  • Any square matrix $A$ is called a singular if
  • A square matrix $A$ is symmetric if
  • a square matrix $A$ is skew symmetric if
  • A square matrix $A$ is Hermitian if
  • A square matrix $A$ is skew Hermitian if
  • The main diagonal elements of a skew-symmetric matrix must be
  • In echelon form of a matrix, the first non-zero entry is called
  • The additive inverse of a matrix exists only if it is
  • The multiplicative inverse of a matrix exists only if it is

https://itfeature.com

https://rfaqs.com

MCQs Quadratic Equations Questions 3

The post is about Multiple Choice Questions from Chapter 4 of Intermediate First-Year Mathematics. The Quiz is about Quadratic Equations Questions with Answers. There are 28 MCQ Type Questions with answers. Let us start with the quiz “Quadratic Equations Questions”.

Please go to MCQs Quadratic Equations Questions 3 to view the test

The standard form of a quadratic equation is written as:

$$ax^2+bx+c=0$$

where:

$a, b$, and $c$ are coefficients (numbers), and $x$ is variable, provided that $a \ne 0$ (otherwise it would not be a quadratic equation).

Online MCQs Quadratic Equations Questions

Quadratic Equations Questions Intermediate Mathematics First Year
  • If 2 and -5 are roots of a quadratic equation then the equation is
  • If $S$ and $P$ are the sum and product of the roots of a quadratic equation then the equation is
  • If $\alpha$ and $\beta$ are the roots of $3x^2-2x+4=0$ then the value of $\alpha+\beta$ is
  • If $p$ and $q$ are the roots of $8x^2-3x-16=0$ then $pq$ is equal to
  • If $ax^2+bx+c=0$ then the discriminant is
  • If the roots of $ax^2+bx+c=0$, ($a\ne 0$) are real then
  • The roots of $ax^2+bx+c=0$ are imaginary, if
  • The roots of $ax^2+bx+c=0$ are equal, if
  • If the discriminant is a positive and perfect square then the roots are
  • If the discriminant is positive and not a perfect square then the roots are
  • If the discriminant is negative, then the roots are
  • If the discriminant is zero, then the roots are
  • The roots of $2x^2-bx + 8=0$ are imaginary, if
  • The equation of the form $ax^2+bx+c=0$ where $a, b, c \in R$, and $a\ne 0$ is called
  • A quadratic equation is also called
  • The degree of a quadratic equation is
  • The graph of a quadratic equation is
  • The basic techniques for solving quadratic equations is/ are
  • To solve $ax^2  + bx+c=0$ where $a, b,c \in R and $a\ne 0$, we can use
  • The equation of the form $(x+a)(x+b)(x+c)(x+d)=k$, where $a+b=c+d$, can be converted into
  • For any $n\in Z, $\omega^n$ is equivalent to one of
  • $\omega^{28}+\omega^{29}+1=$?
  • The fourth roots of unity are
  • The synthetic division is a process of
  • $x^2-x-6=0$ has roots
  • The roots of equation $x^2+2x+3=0$ are
  • If the roots $px^2+qx+1=0$ are equal then
  • A quadratic equation $Ax^2+Bx+C=0$ becomes a linear equation if

Applications of Quadratic Equations

Quadratic equations have various applications in many fields, including:

  • Projectile motion
  • Circuit analysis
  • Optimization problems

https://itfeature.com

https://rfaqs.com